TABLE OF CONTENTS

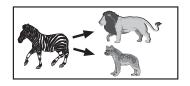
Introduction	V
Skills Chart, National Science Education Standards	vii
Scoring & Assessment Criteria	×
To the Student: Why You Should Become a Science Detective	xi
Science Detective® Certificate	xii
I. PHYSICAL SCIENCE 1—Observable Physical Properties of Objects & Materials	
II. LIFE SCIENCE 15—Animal and Plant Needs and the Environment	

24—The Life Cycle of Animals	50
25—Heredity	52
26—Food Chains and Food Webs	54
27—Organisms Change Environments	56
28—People Change Environments	58
III. EARTH SCIENCE	
29—Earth Science and Earth Materials	62
30—Earth Materials and Their Uses	64
31—Minerals	66
32—Rocks and the Rock Cycle	68
33—Soils	70
34—Fossils	72
35—Slow Changes to the Earth's Surface	74
36—Fast Changes to the Earth's Surface	76
37—The Atmosphere and Weather	78
38—Measuring Temperature, Air Pressure, and Humidity	80
39—Objects in the Sky	82
40—The Sun	84
41—The Motion of Objects in the Universe	86
ANSWERS	88

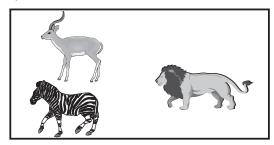
26. Food Chains and Food Webs

A ¹Every organism needs food. ²Food provides energy, and an organism will die if it does not get enough energy. ³Plants get energy from sunlight and use it to make their food. ⁴Animals get their energy by eating plants or by eating animals that eat plants.

B ⁵Because plants make their own food, they are called food **producers**. ⁶Animals cannot produce food—they must *consume* plants or other animals to get food. ⁷Animals are called **consumers**.


C *Without producers, consumers would not live long. That's because animals eat plants or other animals that eat plants. The plants disappeared, animals would run out of food and die.

D ¹¹A special type of diagram is used to show what-eats-what in an ecosystem. ¹²This diagram is called a **food chain**. ¹³A food chain is a kind of flow chart.

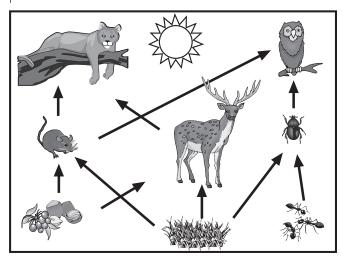


E ¹⁴In a food chain, each organism is called a link. ¹⁵Arrows show the direction energy flows between links. ¹⁶Each arrow means "is eaten by." ¹⁷For example, means "grass is eaten by a zebra."

F ¹⁸Different animals may eat the same kind of consumer.

G ¹⁹On the other hand, one kind of animal may eat more than one kind of consumer. ²⁰A lion eats both zebra and antelope. ²¹Where would you draw two arrows to show the flow of energy in the flow chart below?

H ²²It is easier to use names instead of drawing pictures in a flow chart. ²³How would you read this flow chart?



Grass

Zebra

Lion

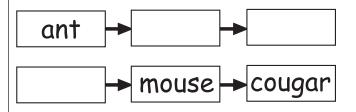
l ²⁴A single food chain does not tell how all the organisms in an ecosystem relate to one another. ²⁵We can learn a lot about an ecosystem by putting several food chains in one diagram. ²⁶A diagram that combines more than one food chain is called a **food web**. ²⁷Think about the food web below.

- For each statement, circle T or F for true or false. In the blanks, write the number(s) of the <u>SENTENCE(s)</u> that gives the best evidence for the answer.
 - a. An animal can be a producer.

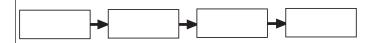
T F ___

b. A mouse is a consumer.

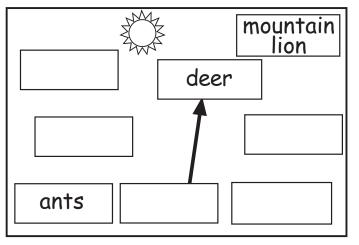
T F __


- c. Producers get energy from the sun. TF____, ____
- d. Consumers can survive without producers.
- 2. What is the most likely meaning of consume as it is used in sentence 6?
 - a. change into
- c. feed
- b. take in
- d. become
- Why is the sun part of a food chain? Use complete sentences to explain the answer.

Write the number of the sentence that gives the best evidence for the answer. ____

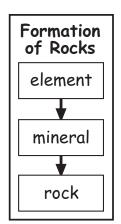

If plants disappeared, could animals continue to survive?

Use complete sentences to explain why or why not.


5. Using the food web in the lesson, complete the following food chains of the owl and the cougar.

6. Write the names of the following organisms in the correct order in the flow chart below: fish, sea grass, shark, and shrimp.

7. Look again at the food web in the lesson. Then complete the diagram below by adding names and connecting them with arrows.


30. Earth Materials and Their Uses

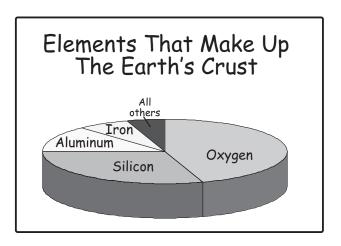
A ¹The earth is made up of a variety of materials, such as rocks, minerals, and metals. ²People can use these resources in many ways—but first, they have to get them.

B ³We get many earth materials by digging into the earth's crust. ⁴The earth's crust is a thin layer of solid rock that makes up the earth's outer layer. ⁵It is about 20 miles (32 km) thick.

C ⁶Rock is made of one or more minerals stuck together. ⁷Minerals

are solid, nonliving substances found in the earth's crust. ⁸A mineral is made of elements and compounds. ⁹For example, limestone is a mineral made up of calcium, carbon, and oxygen. ¹⁰An **element** is a basic substance made of only one kind of matter.

D ¹¹People use rocks to build things, such as stone walls. ¹²Rocks are also used to make other building materials, such as concrete.


E ¹³Minerals have many uses. ¹⁴For example, table salt is used to make food taste better. ¹⁵Minerals such as diamonds and gemstones are used to make jewelry. ¹⁶Because they are so hard, diamonds are also used in drills or cutting machines. ¹⁷Coins used to be made from *pure* materials such as gold and silver. ¹⁸Each of these metals is

made of a single element. ¹⁹Can you give two examples of metals used to build things like bridges and automobiles?

F ²⁰People also use the earth as a source of energy. ²¹For example, the inside of the earth is so hot that its heat can be used to boil water. ²²Boiling water makes steam. ²³Steam is a force that can be used to produce electricity. ²⁴The energy in hot water can also be used to heat homes. ²⁵Some of the earth's minerals are also used as a source of energy. ²⁶For example, radioactive elements like uranium are used to produce nuclear energy. ²⁷Fossil fuels like fuel oil and coal also come from the earth.

G ²⁸The water that covers most of the surface of the earth is another natural resource. ²⁹We use the oceans in transporting goods and people by boat. ³⁰If necessary, we can remove the salt to make drinking water. ³¹We can even use the motion of ocean waves to produce electricity.

H ³²The circle graph below shows the major elements that make up the earth's crust. ³³About how much of the earth's crust is made up of oxygen?

- 1. For each statement, circle T or F for true or false. In each blank, write the number of the <u>SENTENCE</u> that gives the best evidence for the answer.
 - a. Diamonds are used in drills to make them more attractive.

T F ___

- b. An element can be broken down into compounds.T F _____
- c. The motion of ocean waves produces a force. TF___
- 2. What is the most likely meaning of pure as it is used in sentence 17?
 - a. unmixed
- c. dirty
- b. mixed
- d. valuable
- 3. Sodium chloride is a mineral made up of two elements, sodium and chlorine. Therefore, sodium chloride is
 - a. an element.
 - b. an atom.
 - c. a compound.
 - d. a rock.
- 4. The metal copper is made up of only one kind of matter. Therefore, copper is
 - a. an element.
 - b. an atom.
 - c. a compound.
 - d. a rock.

- 5. Use the *Elements that Make Up* the Earth's Crust pie chart in the lesson to answer the following questions.
 - a. Which element is there most of in the earth's crust?

How can you tell from the pie chart?


b. Which element is there less of, iron or aluminum?

Why is this difficult to answer?

c. The earth's crust has over 90 elements. Why do you think the pie chart in the lesson shows only a few of these? Use a complete sentence to explain the answer.

6. Complete the flow chart below to show what makes up a rock, starting with its most complex part to its simplest. Use these terms:

> mineral compound rock element

